The timeline of a technology that went from “impossible” to “cloud-accessible” in your lifetime
If a friend told you they built a computer that could exist in multiple states simultaneously and solve problems that would take regular computers millions of years, you’d probably ask to see it. But here’s the quantum twist: the moment you look at it, you might break the magic. This isn’t science fiction—it’s the bizarre reality of quantum computing. This field started with a desperate hack to solve a physics problem in 1900 and has grown into a multi-billion-dollar race to redefine reality itself.
Let me take you on a journey from Max Planck’s act of desperation to Google’s latest quantum chip, exploring the mind-bending milestones, the surprising cost evolution, and the Nobel Prize-winning breakthroughs that made it all possible.
Part 1: When Physics Broke (1900-1980)
1900: The “Act of Desperation” That Started Everything
Max Planck wasn’t trying to revolutionize physics. He was just trying to explain why hot objects glow the way they do. Classical physics predicted they’d release infinite energy (they don’t). In what he called an “act of desperation,” Planck proposed that energy comes in discrete packets called “quanta.” This wasn’t just a mathematical trick—it was the birth certificate of quantum mechanics. The cost? Just a century of confusion and a few Nobel Prizes.
1913: The Quantum Atom
Niels Bohr built on Planck’s idea, proposing that electrons orbit atomic nuclei in specific, quantized energy levels—like stairs, not slopes. This explained why elements emit light at exact wavelengths. Still theoretical, still cheap: the main investment was brainpower and heated debates at conferences.
1925-26: The Mathematical Earthquake
Werner Heisenberg and Erwin Schrödinger independently created the mathematical frameworks—matrix mechanics and wave mechanics—that finally described this weird quantum world. Particles could be waves. You couldn’t know a particle’s position and momentum at the same time (the Heisenberg Uncertainty Principle). Reality became probabilistic, not deterministic. The Nobel Prize committees would eventually reward these insights, but in the 1920s, this was still pure academic research costing thousands, not millions.
1921 & 1965: Nobels Validate the Weirdness
Albert Einstein won his Nobel Prize in 1921 not for relativity, but for explaining the photoelectric effect using quantum theory—cementing the idea that light itself comes in particles (photons). Then in 1965, Richard Feynman, Julian Schwinger, and Sin-Itiro Tomonaga won the Nobel for quantum electrodynamics (QED), making quantum calculations actually workable. These prizes—about $50,000 in Einstein’s time, about $1 million today—recognized that this wasn’t just philosophy; it was real physics.
The Price Tag So Far: By 1980, quantum mechanics was the most successful scientific theory ever, but it existed almost entirely on blackboards and in university labs. The total investment was likely under $100 million in today’s dollars, primarily government funding for basic research. It was science for science’s sake.
Part 2: “Why Can’t We Build a Computer Out of This?” (1980s)
Everything changed when physicists stopped asking “what is quantum mechanics?” and started asking “what can we do with it?”
1982: Feynman’s Flash of Insight
Richard Feynman, already a Nobel laureate, gave a lecture that launched a field. He pointed out that classical computers couldn’t efficiently simulate quantum systems—too many variables. But a computer built from quantum systems? That could do it naturally. “Nature isn’t classical, dammit,” he famously said, “and if you want to make a simulation of nature, you’d better make it quantum mechanical.”
1985: The Universal Quantum Computer
David Deutsch formalized Feynman’s idea, publishing the theoretical blueprint for a universal quantum computer. It was elegant, powerful, and completely impossible to build with 1985 technology. The cost? Just the price of academic journal publication—maybe $500 in printing fees.
1973 Nobel: The Missing Piece
Here’s where a previous Nobel becomes crucial. In 1973, Brian Josephson won the Nobel Prize for predicting that electrons could “tunnel” through an insulating barrier in superconductors. This Josephson junction would become the beating heart of superconducting quantum computers. The Nobel committee had no idea they were awarding the key to a future trillion-dollar industry.
The Price Tag in the 80s: Still academic. Experiments required liquid helium cooling (a few thousand dollars) and custom electronics (tens of thousands). Total global investment in quantum computing research was maybe $10 million annually. It was fringe science, not industry.
Part 3: Algorithms That Terrified the CIA (1994-2000)
The 1990s gave us algorithms so powerful they made intelligence agencies panic.
1994: Shor’s Algorithm Changes Everything
Mathematician Peter Shor proved that a quantum computer could factor large numbers exponentially faster than classical computers. Why does this matter? Because factoring large numbers is the foundation of modern encryption—your bank accounts, government secrets, and cryptocurrency all rely on this being hard. Shor’s algorithm meant that a sufficiently large quantum computer could break the internet’s security. Overnight, quantum computing went from academic curiosity to national security priority.
1996: Grover’s Search
Lov Grover developed a quantum search algorithm that could search unsorted databases quadratically faster. Less dramatic than Shor’s but more widely applicable.
1999: The First Quantum Startup
Geordie Rose founded D-Wave Systems, becoming the first company to bet everything on quantum computing. This was the moment quantum computing got a business model and a price tag.
2001: Proof of Concept
IBM and Stanford actually ran Shor’s algorithm, factoring the number 15 into 3 × 5 on a 7-qubit quantum processor. It was trivially easy for a classical computer, but it proved the principle. The hardware cost? Probably $1-2 million in research equipment.
Investment Explosion Begins: After Shor’s algorithm, government funding surged. The U.S. DARPA started quantum initiatives. Total annual global investment jumped to perhaps $50-100 million.
Part 4: Building Reality (2000s-2010s)
This is when quantum computers stopped being theory and started being… well, expensive lab equipment.
2002: The Transmon Qubit
Michel Devoret and colleagues at Yale developed the “transmon” qubit, a superconducting qubit design that became the industry standard. This was the engineering breakthrough that made stable qubits possible. Google, IBM, and Rigetti still use transmon-based designs today.
2003 Nobel: Understanding Superconductors
Alexei Abrikosov, Vitaly Ginzburg, and Anthony Leggett won the Nobel Prize for explaining superconductivity and superfluidity. Leggett’s work specifically predicted that macroscopic quantum tunneling should be observable—a prediction that would directly enable superconducting quantum computers.
2010: First Commercial Quantum Computer
D-Wave released the D-Wave One, a 128-qubit quantum annealer, costing around $10 million. It was controversial—many argued it wasn’t a “true” quantum computer—but it was the first time you could buy quantum computing power. Only Lockheed Martin and a few research labs could afford it.
2014-2016: The Cloud Changes Everything
IBM launched the Quantum Experience in 2016, putting a real quantum computer on the cloud. Suddenly, any high school student with internet could run quantum algorithms. The price? Free for basic access. Hardware that cost millions was now a public utility.
The Investment Gold Rush: By 2019, venture capitalists were paying attention. Total investment in quantum startups reached hundreds of millions annually. Building a quantum computer still costs $10-100 million in hardware alone, but cloud access made the marginal cost nearly zero.
Part 5: “Quantum Supremacy” and the Real World (2019-2024)
2019: Google Claims Victory
Google announced “quantum supremacy”—their 53-qubit Sycamore processor solved a specific problem in 200 seconds that would take a classical supercomputer 10,000 years. IBM disputed the claim, but the milestone stood: quantum computers had done something impractical for classical machines.
2022 Nobel: Entanglement Gets Its Due
Alain Aspect, John Clauser, and Anton Zeilinger won the Nobel for proving quantum entanglement is real—”spooky action at a distance” exists. This validated the fundamental resource that quantum computers use to be powerful.
2024: Willow and Exponential Error Correction
Google announced Willow, a 105-qubit processor that achieved exponential error correction—the “break-even” point where adding more qubits actually makes the system more stable, not less. This is the breakthrough needed for practical, fault-tolerant quantum computing. John Martinis, who would share the 2025 Nobel Prize, was instrumental in this work.
Investment Goes Nuclear: In 2024 alone, quantum startups attracted $2.2 billion in venture capital—quadrupling investment from five years prior. By mid-2025, total equity funding exceeded $3.77 billion. The World Economic Forum predicts quantum technologies could generate $900 million to $2 trillion in economic value by 2035.
The Cost Reality in 2025:
- A full-scale quantum computer: $100+ million (still only for tech giants and nation-states)
- Cloud access: $0-1.50 per circuit (accessible to anyone)
- A quantum computing course: Free (thanks to companies trying to build a talent pipeline)
Part 6: The 2025 Nobel and What It Means for Tomorrow
October 2025: The Superconducting Circuit Nobel
This year’s Nobel Prize in Physics went to John Clarke, Michel H. Devoret, and John Martinis for their 1980s experiments demonstrating macroscopic quantum tunneling and energy quantization in electrical circuits. They proved that quantum effects—once thought to exist only at atomic scales—could be controlled in circuits large enough to hold in your hand.
The prize? 11 million Swedish kronor (about $1.1 million), split three ways.
But here’s why this matters for your future: their work is the foundation of every superconducting quantum computer today. When Google announced Willow in 2024, they were building on principles these three proved four decades ago. Michel Devoret is now Chief Scientist at Google Quantum AI. John Martinis co-founded quantum startup Qolab after his time at Google. Their 1980s curiosity-driven research became the bedrock of a potential trillion-dollar industry.
What “Tomorrow” Looks Like:
2025-2030: The Noisy Intermediate-Scale Era
We’re entering the NISQ (Noisy Intermediate-Scale Quantum) era’s final years. Companies will have 1,000+ qubit systems, but they’ll still have errors. The focus: finding practical applications even with noise.
2030s: Fault-Tolerance
Most experts predict we’ll see fault-tolerant quantum computers—systems that can correct their own errors and run arbitrarily long calculations—by the mid-2030s. When this happens, Shor’s algorithm becomes a real threat to encryption, and new quantum-safe cryptography becomes mandatory.
2040s: Quantum as Utility?
Some visionaries suggest quantum computers could become like electrical utilities—always available via cloud, with specialized hardware for different tasks. Will you have a quantum computer in your pocket? Probably not. But you’ll use quantum-powered services daily: better drug discovery means personalized medicine, optimized logistics means cheaper everything, and new materials could revolutionize batteries and solar panels.
The Cost Trajectory:
- 1900-1980: Billions in total R&D (mostly government)
- 1980-2000: Tens of millions annually
- 2000-2010: Hundreds of millions (first commercial systems)
- 2010-2020: Billions (VC enters)
- 2020-2025: $3.77+ billion in startup funding alone
- 2030s: Likely $100+ billion industry-wide
But for you? The marginal cost is already zero for learning and experimenting. That’s the real democratization.
Your Quantum Future
Here’s what this timeline means for a high school student in 2025:
Careers: Quantum computing needs more than physicists. It needs software developers, hardware engineers, supply chain experts, ethicists, and designers. The “quantum workforce” is projected to need hundreds of thousands of people by 2035. Starting salaries for quantum engineers already exceed $150,000.
Education: You don’t need a PhD to start. IBM’s Qiskit, Google’s Cirq, and Amazon’s Braket all have free tutorials. Run your first quantum circuit today on a real quantum computer—for free.
Moral of the Story: The 2025 Nobel winners didn’t set out to build a trillion-dollar industry. They were curious about whether quantum mechanics worked at human scales. Their curiosity—funded by basic research grants and university salaries—became the foundation for a revolution.
The quantum timeline teaches us that yesterday’s impossible theory becomes tomorrow’s fundamental technology. The weirdness that bothered Einstein (who called entanglement “spooky action at a distance”) is now a practical engineering resource. The “act of desperation” that solved a glow-in-the-dark problem in 1900 led to computers that might cure cancer.
The Bottom Line: Quantum computing has gone from a $0 theoretical idea to a $3.77+ billion industry in four decades. But the most important cost is still zero: the cost of imagination, curiosity, and asking “what if?” That’s the real quantum resource—and you already have unlimited access.
Sources & Further Reading:
- Nobel Prize history: Nobel Prize Outreach and Royal Swedish Academy of Sciences
- Quantum timeline and algorithms: Quantumpedia, The Quantum Insider
- Investment data: World Economic Forum and industry reports
- Company developments: Google Quantum AI, IBM, IonQ, D-Wave
- 2025 Nobel Prize details: Science News, Forbes, USC Dornsife
Αν ένας φίλος σου έλεγε ότι έφτιαξε έναν υπολογιστή που μπορεί να βρίσκεται σε πολλές καταστάσεις ταυτόχρονα και να λύνει προβλήματα που ένας κλασικός υπολογιστής θα χρειαζόταν εκατομμύρια χρόνια, πιθανότατα θα του ζητούσες να σου το δείξει.
Αλλά εδώ είναι το κβαντικό «τρικ»: τη στιγμή που θα το κοιτάξεις, ίσως να καταστρέψεις τη μαγεία.
Ακούγεται σαν επιστημονική φαντασία — αλλά είναι η πραγματικότητα της κβαντικής υπολογιστικής.
Ας κάνουμε ένα ταξίδι από την «απεγνωσμένη» ιδέα του Max Planck το 1900 μέχρι το τελευταίο κβαντικό τσιπ της Google, βλέποντας τα πιο εντυπωσιακά επιτεύγματα, τις εξελίξεις του κόστους και τα Nobel που άνοιξαν τον δρόμο σε μια νέα εποχή.
Μέρος 1: Όταν η Φυσική «χάλασε» (1900–1980)
1900 – Η κβαντική σπίθα
Ο Max Planck προσπάθησε να εξηγήσει γιατί τα θερμά αντικείμενα εκπέμπουν φως όπως εκπέμπουν.
Οι κλασικές εξισώσεις έδιναν άπειρη ενέργεια — κάτι που δεν συμβαίνει.
Σε μια «πράξη απελπισίας», πρότεινε ότι η ενέργεια εκπέμπεται σε μικρά πακέτα, τα «κβάντα».
Έτσι γεννήθηκε η κβαντική μηχανική.
1913 – Το άτομο του Bohr
Ο Niels Bohr εξήγησε γιατί τα άτομα εκπέμπουν συγκεκριμένα χρώματα φωτός: τα ηλεκτρόνια κινούνται σε συγκεκριμένα επίπεδα ενέργειας.
1925–1926 – Η γέννηση της σύγχρονης κβαντικής μηχανικής
Ο Heisenberg και ο Schrödinger δημιούργησαν δύο μαθηματικά μοντέλα που περιέγραφαν τον κβαντικό κόσμο.
Από τότε, η πραγματικότητα έγινε… πιθανότητες.
Τα πρώτα Nobel επιβεβαιώνουν το παράξενο
- Einstein (1921): Φωτοηλεκτρικό φαινόμενο → το φως είναι και σωματίδιο.
- Feynman, Schwinger & Tomonaga (1965): Κβαντική ηλεκτροδυναμική → η πιο ακριβής θεωρία που έγινε ποτέ.
Το κόστος μέχρι το 1980
Η κβαντική μηχανική ήταν καθαρή επιστήμη.
Λίγα εργαστήρια, μαυροπίνακες και κρατική χρηματοδότηση.
Σκοπός: να καταλάβουμε τη φύση, όχι να φτιάξουμε υπολογιστές.
Μέρος 2: «Μπορούμε να χτίσουμε έναν υπολογιστή με αυτό;» (1980s)
1982 – Ο Richard Feynman αλλάζει το παιχνίδι
Διαπίστωσε ότι οι κλασικοί υπολογιστές δεν μπορούν να προσομοιώσουν εύκολα κβαντικά συστήματα.
Άρα γιατί να μην κατασκευάσουμε έναν υπολογιστή που λειτουργεί κβαντικά;
1985 – Ο David Deutsch και ο πρώτος κβαντικός υπολογιστής
Δημοσίευσε το πρώτο θεωρητικό μοντέλο «καθολικού κβαντικού υπολογιστή».
1973 – Το χαμένο κομμάτι: Το φαινόμενο Josephson
Το βραβευμένο με Nobel φαινόμενο έγινε η καρδιά των σημερινών υπεραγώγιμων κβαντικών κυκλωμάτων.
Μέρος 3: Οι αλγόριθμοι που τρόμαξαν τις μυστικές υπηρεσίες (1994–2000)
1994 – Ο αλγόριθμος Shor
Απέδειξε ότι ένας κβαντικός υπολογιστής μπορεί να σπάσει την RSA κρυπτογράφηση.
Καμία κυβέρνηση δεν το πήρε αψήφιστα.
1996 – Ο αλγόριθμος Grover
Ταχύτερη αναζήτηση σε μη ταξινομημένα δεδομένα: τεράστιο κέρδος.
2001 – Το πρώτο κβαντικό πείραμα της IBM
Παρήγαγαν την παραγοντοποίηση του 15.
Απλό, αλλά ιστορικό.
Μέρος 4: Χτίζοντας πραγματικούς κβαντικούς υπολογιστές (2000–2019)
2002 – Το υπεργαγώγιμο qubit (Transmon)
Η τεχνολογία που χρησιμοποιούν σήμερα Google & IBM.
2010 – D-Wave
Η πρώτη «εμπορική» κβαντική μηχανή (10 εκατ. δολάρια).
2016 – IBM Quantum Experience
Ο πρώτος κβαντικός υπολογιστής διαθέσιμος δωρεάν στο cloud.
Οποιοσδήποτε, ακόμη και μαθητές, μπορούν να τρέξουν κβαντικά κυκλώματα.
Μέρος 5: Κβαντική υπεροχή και σύγχρονα θαύματα (2019–2025)
2019 – Η Google ανακοινώνει “κβαντική υπεροχή”
Ο επεξεργαστής «Sycamore» έκανε κάτι σε 200 δευτερόλεπτα που ένας υπερυπολογιστής θα έκανε 10.000 χρόνια.
2022 – Nobel για την εμπλοκή
Η εμπλοκή, το «στοιχειωμένο» φαινόμενο του Einstein, είναι πραγματική.
2024 – Το τσιπ Willow
Το πρώτο που πετυχαίνει κλιμακούμενη κβαντική διόρθωση σφαλμάτων.
2025 – Nobel για κβαντικά κυκλώματα
Clarke, Devoret και Martinis βραβεύονται για έρευνες των 1980s που σήμερα βρίσκονται σε κάθε σύγχρονο κβαντικό υπολογιστή.
Μέρος 6: Τι σημαίνει αυτό για εσένα (2025 → 2035)
Καριέρες
Η ζήτηση αυξάνεται ραγδαία:
- κβαντικοί μηχανικοί
- προγραμματιστές Qiskit / Cirq
- ειδικοί κυβερνοασφάλειας
- ερευνητές
- υλικομηχανικοί
Μισθοί: >150.000$ διεθνώς.
Εκπαίδευση
Δεν χρειάζεται διδακτορικό για να ξεκινήσεις.
Υπάρχουν δωρεάν πλατφόρμες:
- IBM Quantum (Qiskit)
- Google Cirq
- Amazon Braket
Εφαρμογές του αύριο
- εξατομικευμένη ιατρική
- σχεδιασμός μορίων
- νέες μπαταρίες
- πρόβλεψη καιρού & κλιματικών μοντέλων
- κυβερνοασφάλεια
- βελτιστοποίηση μεταφορών
Ουσιαστικό συμπέρασμα
Η κβαντική υπολογιστική ξεκίνησε ως θεωρία για να εξηγήσει το φως και κατέληξε θεμέλιο μιας νέας υπολογιστικής εποχής.
Το πιο ισχυρό συστατικό δεν είναι τα qubits — είναι η ανθρώπινη περιέργεια.
Και αυτό, το έχεις ήδη.